If it's not what You are looking for type in the equation solver your own equation and let us solve it.
.8x^2+6x-11=0
a = .8; b = 6; c = -11;
Δ = b2-4ac
Δ = 62-4·.8·(-11)
Δ = 71.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-\sqrt{71.2}}{2*.8}=\frac{-6-\sqrt{71.2}}{1.6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+\sqrt{71.2}}{2*.8}=\frac{-6+\sqrt{71.2}}{1.6} $
| x^2-x-2=3 | | 5m=2m-7/3 | | 93=4x+45 | | 4(2x+1)=3x+29 | | 8x+6=108 | | 7/9=1/6+4/3g | | x/4.6=3.7/16.4 | | a=4+12 | | 5−6x=−2x+13 | | 2t3+1=7t/15+3 | | x−8=4−5x | | 15+5x=6x+17 | | 3k÷4=k÷6-14 | | 6x=2x-12= | | 93=4x+65 | | 10x+5=2(x-2)+8 | | 5(2+h)=30 | | (2x+9)(x+9)=0 | | ∑8k=1(−16)k−1 | | 5z+4=3-2z | | -20+4x=46-2x | | 1=1/5+1/2a(1/8100) | | 9z/7-6z=15 | | 15=3t- | | 14x^2+19x^2-3x=0 | | 6x^2+9x-20=0 | | (7/6)(3j+24)=(5/6)j+84* | | 3x/8=60 | | 6x+20=3x+29 | | (x+2)x4=16 | | 3x-4=90° | | 4y=-56/25 |